DATA SCIENCE -120 total credits requiredMATHEMATICS42 upper division credits requiredCONCENTRATIONPlease review with the Data Science Advisor

ALL UNIVERSITY CORE CURRICULUM (AUCC)

Status	Category	Course	Credit
	1A) Intermediate writing	CO 150 or HONR 193	3
	1B) Quantitative Reasoning	MATH 156 (preferred) or MATH 160	4
	1C) Diversity, Equity, and Inclusion		3
	2) Advanced Writing	CO 300, 301B ,302, or JTC 300	3
	3A) Biological and Physical Science w/ lab		4
	3A) Biological and Physical Science		3
	3B) Arts & Humanities	CS 150B	3
	3B) Arts & Humanities	CS 201/PHIL 201	3
	3C) Social & Behavioral Science		3
	3D) Historical Perspectives		3
	4) Depth and Integration	DSCI 445 and DSCI 478	7
		total	39

CORE COURSES (Total of 58 credits) - Must complete ALL core courses

COMPUTER SCIENCE

- ____ CS 150B Culture and Coding [3]
- ____ CS 164 CS1--Computational Thinking w Java [4]
- ____ CS 165 CS2--Data Structures [4]
- ____ CS 201 Ethical Computing Systems [3]
- ____ CS 220 Discrete Structures & their Applications[4]

MATHEMATICS

- ____ MATH 151- Math Algorithms in Matlab I [1]
- ____ MATH 156 Math for Computational Science I [4]
- ____ MATH 256 Math for Computational Science II [4]

DATA SCIENCE

- ____ DSCI 100 First Year Seminar in Data Science [1]
- ____ DSCI 235 Data Wrangling [2]
- ____ DSCI 320 Optimization Methods in Data Science[3]
- DSCI 335 Inferential Reasoning in Data Analysis [3]
- ____ DSCI 336 Data Graphics and Visualization [1]
- ____ DSCI 369 Linear Algebra for Data Science [4]
- ____ DSCI 445 Statistical Machine Learning [3]
- ____ DSCI 478 Capstone in Data Science [4]

STATISTICS

- ____ STAT 158 Introduction to R Programming [1]
- ____ STAT 315 Intro to Theory & Practice of Statistics[3]
- ____ STAT 341 Statistical Data Analysis I [3]
- ____ STAT 342 Statistical Data Analysis II [3]

MATHEMATICS CONCENTRATION REQUIREMENTS

Select a minimum of FOUR (4) Mathematics Courses from Mathematics Electives List:

MATH 301- Intro to Combinatorial Theory [3]	MATH 417 – Advanced Calculus I [3]
MATH 317 - Advanced Calculus of One Variable [3]	MATH/ECE 430 – Fourier & Wavelet Analysis
MATH 331 - Intro to Mathematical Modeling [3]	w/Apps [3]
MATH 332 - Partial Differential Equations [3]	MATH 455 – Mathematics in Biology & Medicine [3]
MATH 345 - Differential Equations [4]	MATH 460 - Information and Coding Theory [3]
MATH 360 - Mathematics of Information Security[3]	

Data Science Electives – Select at least FIFTEEN (15) credit hours from Data Science Electives List (number of courses will vary based on the credit hours of the courses)

DS Elective 1: []	DS Elective 4: []
DS Elective 2: []	DS Elective 5: []
DS Elective 3: []	DS Elective 6: []

Data Science Electives List

CS 214 - Software Development [3]	ECON 204 - Principles of Macroeconomics [3]
CS 250 - Computer Systems Foundations [4]	ECON 304 - Intermediate Macroeconomics [3]
CS 270 – Computer Organization [4]	ECON 306 - Intermediate Microeconomics [3]
CS 314 – Software Engineering [3]	ECON 435 - Intermediate Econometrics [3]
CS 320 - AlgorithmsTheory and Practice [3]	STAT 351 - Sports Statistics and Analytics I [3]
CS 370 - Operating Systems [3]	STAT 400 - Statistical Computing [3]
CS 435 – Introduction to Big Data [4]	STAT 420 - Probability and Mathematical Statistics I [3]
CS 440 – Introduction to Artificial Intelligence [4]	STAT 421 - Introduction to Stochastic Processes [3]
CT 301 – C++ Fundamentals [2]	STAT 430 - Probability and Mathematical Statistics I [3]
DSCI 473 - Intro to Geometric Data Analysis [2]	STAT 440 - Bayesian Data Analysis [3]
DSCI 475 - Topological Data Analysis [2]	STAT 451 - Sports Statistics and Analytics I [3]
ECON 202 - Principles of Microeconomics [3]	STAT 460 - Applied Multivariate Analysis [3]

Additional Notes:

- Although there is not a specified grade required for courses in the major, it is important to be aware of prerequisite requirements. Grades of C are better are often necessary, and some courses require B or better in prerequisite coursework.
- A cumulative GPA of 2.0 or above is required to remain in good academic standing
- Students pursuing the Data Science major with a CS concentration are not eligible for any minors offered by the Computer Science Department
- MATH 160, 161, and 261 sequence will substitute for MATH 156 + 256 sequence